\qquad
Hour \qquad

Directions: All work must be shown to receive full credit.

Use the figure to answer questions 1-4.

1) Name all angles that have B as a vertex.

2)Name a pair of supplementary angles.
3)Name a pair of vertical angles.
4)Name a linear pair.
2) Name all the different ways to name line $\overleftrightarrow{A B}$.
3) Simplify the radical: $\sqrt{192}$
4) Find the value of the variable and $S T$ if S is between R and T. Let $\mathrm{RS}=16, \mathrm{ST}=2 \mathrm{x}$, $\mathrm{RT}=5 \mathrm{x}+10$. You must start this problem with a geometry step. Draw a diagram, show all of your work, and justify each step.
5) Find the value of x and $S R$ if R is between S and T. $S R=3 \mathrm{x}, R T=2 \mathrm{x}+1, S T=6 \mathrm{x}-1$. You must start this problem with a geometry step. Draw a diagram, show all of your work, and justify each step.
6) Find the value of x and $\overline{S T}$ using the figure to the right. You must start the problem with a geometry step, show all of your work, and justify each step.

7) Find x and the measure of $\overline{J K}$ if K is the midpoint of $\overline{J L}$. You must start the problem with a geometry step, show all of your work, and justify each step.

8) Find $X Y$ if Y is the midpoint of $\overline{X Z}, X Y=2 x+3$ and $Y Z=6-4 x$. Draw a diagram to help you. You must start the problem with a geometry step, show all of your work, and justify each step.
9) Find the coordinates of the endpoint S if T is the midpoint of RS and $\mathrm{T}(3,4)$ and $\mathrm{R}(-2,3)$. You must show work.
10) Find the exact distance between $M(3,5)$ and $N(7,9)$. Write your answer as a simplified radical.

Find the distance, midpoint, and slope of each segment. You must show work, simplify all radicals and fractions!
11) $\mathrm{G}(-10,2), \mathrm{H}(-7,6)$

Distance: \qquad
Midpoint: \qquad
Slope: \qquad
12) $\mathrm{J}(4,2), \mathrm{K}(8,-6)$

Distance: \qquad
Midpoint: \qquad
Slope: \qquad
13) $\mathrm{D}(10,20), \mathrm{E}(-10,-20)$

Distance: \qquad
Midpoint: \qquad
Slope: \qquad

Distance:
11) A student is completing the following construction. What construction are they making and what is true about the figure?

12) Classify all that apply: adjacent, vertical, linear pairs, complementary, supplementary, right angle and/or congruent.
a)

e)

f)

13) Draw $\overline{F E} \perp \overline{D C}$
14) $\operatorname{Draw} \overline{W X} \cong \overline{Y Z}$
15) Draw $<Q R S$ and $<Q R T$ are a linear pair
16) Draw $\overleftrightarrow{A B}$ is a \perp bisector of $\overline{S T}$
17) Draw $\overrightarrow{E T}$ is an angle bisector of $\angle R E O$
18) Draw $\overline{Q R}$ is a segment bisector of $\overline{S T}$
19. FINISH THE CONSTRUCTION, THEN USE THE FIGURE TO THE RIGHT
A. NAME THE TYPE OF TRANSFORMATION
B. NAME ALL PROPERTIES OF THE CONSTRUCTION THAT ARE TRUE
20. FINISH THE CONSTRUCTION, THEN USE THE FIGURE TO THE RIGHT
A. NAME THE TYPE OF TRANSFORMATION
B. NAME ALL PROPERTIES OF THE CONSTRUCTION

Draw in the line of reflection for 21 through 26.
21.

23.

25.

22.

24.

Graph the transformation for 27 through 34. If it is a translation, write the rule for the translation.
27. $(x, y) \rightarrow(x+2, y+1)$

29. rotation 90° counterclockwise about the origin

31. rotation 180° about the origin

28. reflection across $y=x$

30. rotation 90° clockwise about the origin

32. reflection across $y=2$

33. reflection across $x=1$

34. $(x, y) \rightarrow(x-5, y-2)$

35. In a basketball game, Roger is standing at position A and he bounces the ball to Edwin standing at position B. Copy the diagram and sketch the path the ball must travel after being bounced to Edwin by Roger.

$)^{A}$

Floor
36. Find the slopes of lines. Simplify all fractions, if possible.
$S(6,5), \quad T(-4,3) X(-4,2), Y(-3,-3)$
Slope of ST: \qquad

Slope of XY: \qquad
37. The composite of reflections over two parallel lines results in a \qquad .

From 1 to 2 the transformation performed is : \qquad

From 2 to 3 the transformation performed is : \qquad

From 1 to 3 the transformation performed is : \qquad
38. The composite of reflections over two intersecting lines results in a \qquad .

This is a composite of transformations.

From 1 to 2 the transformation performed is : \qquad

From 2 to 3 the transformation performed is : \qquad

From 1 to 3 the transformation performed is : \qquad

2
39. Reflect the figure over the given line.

40. Rotate the figure 110 degrees counterclockwise around point R
d.

