Worksheet - Piecewise functions
 Mr. Chvatal

Please graph the following piecewise functions.

1. $f(x)= \begin{cases}2 x+6 & \text { if }-5<x<-3 \\ -\frac{2}{3} x-1 & \text { if }-3 \leq x<3 \\ x-5 & \text { if } x \geq 3\end{cases}$

2. $\quad f(x)= \begin{cases}\frac{1}{2} x+5 & \text { if } x \leq-2 \\ -\frac{2}{3} x-2 & \text { if }-2<x<0 \\ 4 x-4 & \text { if } x \geq 0\end{cases}$

3. $f(x)= \begin{cases}x^{2}-2 x+1 & \text { if }-1 \leq x<2 \\ \frac{1}{2} x+1 & \text { if } x \geq 2\end{cases}$

4. Please model a piecewise function from the graph below.

5. Volume purchasing allows a manufacturer to reduce its production costs. If the company buys less than 20 red widgets, a key component of their product, they pay $\$ 10$ per piece. The price drops to $\$ 8$ if they purchase any amount from 20 to less than 50 . The best price they can get is $\$ 7$ per red widget for orders of 50 or more. Model a piecewise function and graph below.

6. A planetary explorer module enters the atmosphere of the planet Goobertron at a speed of $500 \mathrm{~km} / \mathrm{hr}$ and immediately begins decelerating by $50 \mathrm{~km} / \mathrm{hr}$. After one hour, the propulsion system slows it to a deceleration rate of $150 \mathrm{~km} / \mathrm{hr}$. After another two hours, the rate of deceleration becomes $300 \mathrm{~km} / \mathrm{hr}$. Please model its speed vs. time with a piecewise function and graph below. After how many hours does the module hit the planet surface?

7. The rate of decay of a certain sub-atomic particle at a temperature of $0^{\circ} \mathrm{C}$ and lower is modeled by the equation $f(x)=x^{2}+4 x$. At temperatures above $0^{\circ} \mathrm{C}$ its rate of decay is modeled by the equation $f(x)=-x^{2}+4 x+2$. Please model the rate of decay with a piecewise function and graph below.

8. Create your own real-world problem, model it with a piecewise function and graph below.

