Unit 11: Circles Test Review 1. Use the figure. Name the circle. Name a radius of the circle. Name the diameter of the circle. Name a chord. Name a tangent. Name a secant. 2. Find the exact circumference and area given that: A. radius= 4cm B. diameter= 12in - 3. The wheels on Elliot's truck each have a circumference of 22π inches. Determine the radius of each wheel. Determine the area of the wheel. - 4. The diameter of a circular swimming pool is 15 feet. Find the exact circumference and area. - 5. Given that the circumference is 20π km, find the exact area. 6. Find the exact circumference of the circle. 7. Find the exact circumference of the circle. 8. In $\bigcirc C$, $\widehat{mAB} = 72$. Assume all lines which appear to be diameters are actual diameters. Find: m<ACD=____ m<BCD=____ $\widehat{mBD} = \underline{\hspace{1cm}}$ $\widehat{mABD} = \underline{\hspace{1cm}}$ 9. In $\bigcirc A$, $m \angle BAD = 110$. Find \widehat{mDE} . 10. Find the exact **LENGTH** of \widehat{PQ} in $\bigcirc R$ (in terms of pi). 11. Find the exact **LENGTH** of \widehat{PQ} in $\bigcirc R$ (in terms of pi) if the m<PRQ is 120° and the diameter is 24. - 12. Points X and Y lie on $\bigcirc P$ so that PX = 5 meters and $m \angle XPY = 90$. Find the exact **length** of \widehat{XY} . - 13. The figure represents a Japanese fan of 32 cm radius. Find the <u>length</u> of the \widehat{AB} . Round to the nearest hundredth. Keep in terms of pi. 14. In $\bigcirc O$, AB = 12 centimeters, OE = 4 centimeters, OF = 4 centimeters, and $\widehat{mCD} = 123^{\circ}$. Find CF. Find the radius. Find \widehat{mAB} CF= radius=____ $\widehat{mAB} =$ - 15. If DE = 12 inches, OF = 10 inches, and \overline{OF} is perpendicular to \overline{DE} - A. Find the distance from the center to the chord and the distance from the chord to Point F. - B. If \widehat{mDF} =63°, what is \widehat{mFE} ? - 16. Chords \overline{XY} and \overline{WV} are equidistant from the center of $\bigcirc O$. If XY = 2x + 30 and WV = 5x 12, find x. 17. Find the radius of a circle if a 48-meter chord is 7 meters from the center. Draw it! 18. In $\bigcirc D$, $\overline{AB} \cong \overline{CB}$ and m arc CE = 50. Find $m \angle BCE$. 19. Find $m \angle ABC$. Find x. 20. If $m \angle X = 126$ and m<W= 57, find: m< Z=____ m<Y=____ $\widehat{WXY} =$ $\widehat{mWZY} =$ 21. If \overline{AB} is tangent to $\bigcirc C$ at A, find BC and AB. (Use exact values) BC= AB = - 22. a)If \overline{MN} , \overline{NO} , and \overline{MO} are tangent to $\bigcirc P$, find x. - b) \overline{PQ} , \overline{QR} , \overline{RS} , and \overline{SP} are tangent to $\bigcirc X$. Find RS. 23. If x is 12, is BC tangent to the circle? Explain your answer. Find the measure of the numbered angle. 24. 25. If \overrightarrow{AB} is tangent to $\bigcirc P$ at B, find $m \angle 1$. a. 43 b. 86 c. 137 d. 274 26. Find $m \angle PQR$ if \overrightarrow{QP} and \overrightarrow{QR} are tangent to $\bigcirc X$. - a. 70 - b. 110 - c. 125 - d. 140 - 27. Find the missing angles. Assume the lines that appear to be tangent are tangent. - a) b) - 28. Find the radius of the circle whose equation is $(x+3)^2 + (y-7)^2 = 289$. - a. 7 c. 34 b. 17 - d. 289 - 29. Find the center of the circle whose equation is $(x + 11)^2 + (y 7)^2 = 121$. - a. (-11, 7) c. (121, 49) b. (11, -7) - d. 11 - __ 30. Find the equation of a circle with center (0, 0) and radius 4. - a. $x^2 + y^2 = 4$. c. $(x-4)^2 + (y-4)^2 = 16$ b. $x^2 + y^2 = 16$. - d. 4x + 4y = 16 - _ 31. Find the equation of a circle whose center is at (2, 3) and radius is 6. - a. $(x+2)^2 + (y+3)^2 = 6$. c. $(x+2)^2 + (y+3)^2 = 36$ b. $(x-2)^2 + (y-3)^2 = 6$. d. $(x-2)^2 + (y-3)^2 = 36$ b. c. 33. Find the equation of $\bigcirc P$. a. $$x^2 + (y-3)^2 = 4$$ a. $$x^2 + (y-3)^2 = 4$$. b. $x^2 + (y-3)^2 = 2$. c. $$(x-3)^2 + y^2 = 2$$ c. $$(x-3)^2 + y^2 = 2$$ d. $(x-3)^2 + y^2 = 4$