Unit 11: Circles Test Review

1. Use the figure.

Name the circle.

Name a radius of the circle.

Name the diameter of the circle.

Name a chord.

Name a tangent.

Name a secant.

2. Find the exact circumference and area given that:

A. radius= 4cm

B. diameter= 12in

- 3. The wheels on Elliot's truck each have a circumference of 22π inches. Determine the radius of each wheel. Determine the area of the wheel.
- 4. The diameter of a circular swimming pool is 15 feet. Find the exact circumference and area.
- 5. Given that the circumference is 20π km, find the exact area.

6. Find the exact circumference of the circle.

7. Find the exact circumference of the circle.

8. In $\bigcirc C$, $\widehat{mAB} = 72$. Assume all lines which appear to be diameters are actual diameters.

Find:

m<ACD=____

m<BCD=____

 $\widehat{mBD} = \underline{\hspace{1cm}}$

 $\widehat{mABD} = \underline{\hspace{1cm}}$

9. In $\bigcirc A$, $m \angle BAD = 110$. Find \widehat{mDE} .

10. Find the exact **LENGTH** of \widehat{PQ} in $\bigcirc R$ (in terms of pi).

11. Find the exact **LENGTH** of \widehat{PQ} in $\bigcirc R$ (in terms of pi) if the m<PRQ is 120° and the diameter is 24.

- 12. Points X and Y lie on $\bigcirc P$ so that PX = 5 meters and $m \angle XPY = 90$. Find the exact **length** of \widehat{XY} .
- 13. The figure represents a Japanese fan of 32 cm radius. Find the <u>length</u> of the \widehat{AB} . Round to the nearest hundredth. Keep in terms of pi.

14. In $\bigcirc O$, AB = 12 centimeters, OE = 4 centimeters, OF = 4 centimeters, and $\widehat{mCD} = 123^{\circ}$. Find CF. Find the radius. Find \widehat{mAB}

CF=

radius=____

 $\widehat{mAB} =$

- 15. If DE = 12 inches, OF = 10 inches, and \overline{OF} is perpendicular to \overline{DE}
 - A. Find the distance from the center to the chord and the distance from the chord to Point F.

- B. If \widehat{mDF} =63°, what is \widehat{mFE} ?
- 16. Chords \overline{XY} and \overline{WV} are equidistant from the center of $\bigcirc O$. If XY = 2x + 30 and WV = 5x 12, find x.

17. Find the radius of a circle if a 48-meter chord is 7 meters from the center. Draw it!

18. In $\bigcirc D$, $\overline{AB} \cong \overline{CB}$ and m arc CE = 50. Find $m \angle BCE$.

19. Find $m \angle ABC$.

Find x.

20. If $m \angle X = 126$ and m<W= 57, find:

m< Z=____

m<Y=____

 $\widehat{WXY} =$

 $\widehat{mWZY} =$

21. If \overline{AB} is tangent to $\bigcirc C$ at A, find BC and AB. (Use exact values)

BC= AB =

- 22. a)If \overline{MN} , \overline{NO} , and \overline{MO} are tangent to $\bigcirc P$, find x.
- b) \overline{PQ} , \overline{QR} , \overline{RS} , and \overline{SP} are tangent to $\bigcirc X$. Find RS.

23. If x is 12, is BC tangent to the circle? Explain your answer.

Find the measure of the numbered angle.

24.

25. If \overrightarrow{AB} is tangent to $\bigcirc P$ at B, find $m \angle 1$.

a. 43

b. 86

c. 137

d. 274

26. Find $m \angle PQR$ if \overrightarrow{QP} and \overrightarrow{QR} are tangent to $\bigcirc X$.

- a. 70
- b. 110

- c. 125
- d. 140
- 27. Find the missing angles. Assume the lines that appear to be tangent are tangent.
 - a)

b)

- 28. Find the radius of the circle whose equation is $(x+3)^2 + (y-7)^2 = 289$.
 - a. 7

c. 34

b. 17

- d. 289
- 29. Find the center of the circle whose equation is $(x + 11)^2 + (y 7)^2 = 121$.
 - a. (-11, 7)

c. (121, 49)

b. (11, -7)

- d. 11
- __ 30. Find the equation of a circle with center (0, 0) and radius 4.
 - a. $x^2 + y^2 = 4$.

c. $(x-4)^2 + (y-4)^2 = 16$

b. $x^2 + y^2 = 16$.

- d. 4x + 4y = 16
- _ 31. Find the equation of a circle whose center is at (2, 3) and radius is 6.
 - a. $(x+2)^2 + (y+3)^2 = 6$.

c. $(x+2)^2 + (y+3)^2 = 36$

b. $(x-2)^2 + (y-3)^2 = 6$.

d. $(x-2)^2 + (y-3)^2 = 36$

b.

c.

33. Find the equation of $\bigcirc P$.

a.
$$x^2 + (y-3)^2 = 4$$

a.
$$x^2 + (y-3)^2 = 4$$
.
b. $x^2 + (y-3)^2 = 2$.

c.
$$(x-3)^2 + y^2 = 2$$

c.
$$(x-3)^2 + y^2 = 2$$

d. $(x-3)^2 + y^2 = 4$